
Page 1 of 5

LCP-USB Inclinometer sensor

DLL Interface library description

Page 2 of 5

Description
The LCP-USB sensor is connected to a USB host device (typically a PC) with a standard 4 pin USB-A
connector, the LCP-USB interface is USB 2.0 compatible, the sensor has a maximum USB message
rate of 100 messages per second.

In operation the sensor samples the two inclination axes, applies digital filtering to the sampled data
and outputs the results as X and Y readings calibrated in degrees.

Customers can develop their own applications to interface to the LCP-USB device by including
references to Level Developments provided Windows DLL files, the functions contained in the DLL
files are detailed in this document together with basic examples of usage.

USB driver
The LCP-USB has a HID USB interface, and is supported by two Level Developments supplied DLL files
HidLibrary.dll and LCPLibrary.dll, when developing applications for the LCP-USB device the DLL files
must be included in the application directory (e.g. same directory as the EXE file), the DLL files
should also be included as ‘References’ in the user application.

The DLL files are compatible with 32-bit or 64-bit applications.

LCPLibrary.dll functions

The library has a single class called LCPDevice. In the users c# code for example, this is declared like
this:

private static LCPDevice sensor = new LCPDevice();

And thereafter the functions are called using sensor.Function();

For example, to get the X axis value:-

double XAngle;
int XVal;

XVal = sensor.Get_X(); // get scaled integer value of X axis angle

if (XVal == -1000000)

// there is an error, do something..

else // value is good, rescale to floating point degrees

XAngle = (double)(XVal / 1000.0);

All functions which return an int, return the value -1000000 in the case of error. This indicates no
response or timeout to the request sent to the sensor. Usually this is caused by the sensor not being
connected.

Page 3 of 5

List of Functions

Bool Initialise(int VendorId, int ProductId)
Sets up the library and connects to the sensor using the Vendor ID and Product ID. For the LCP_USB,
the Vendor ID is 0x04D8 and the Product ID is 0xEC73. If the operation is successful, true is returned,
otherwise false.

Void Dispose()
Finishes operation with the sensor and closes the connection to the sensor tidily. This must be called
when closing the user app.

int Get_Product
Reads the product code from the sensor. The LCP-USB sensor is code 2. This is not adjustable

int Get_Serial()
Reads the serial number from the sensor. Set at the factory, not adjustable.

int Get_X()
Reads the X Axis angle from the sensor in degrees, scaled by 1000. i.e. a value of 11234 equals
11.234 degrees

int Get_Y()

Reads the Y Axis angle from the sensor in degrees, scaled by 1000. i.e. a value of 11234 equals
11.234 degrees.

int Get_360()

Reads the 360 degree angle from the sensor in degrees, scaled by 1000. i.e. a value of 11234 equals
11.234 degrees.

int Get_Filter()

Reads the filter setting from the sensor.

Index Frequency
0 0.125Hz
1 0.25Hz
2 0.5Hz
3 1.0Hz
4 2Hz
5 4Hz
6 8Hz
7 16Hz
8 32Hz

int Get_X_Direction()
Reads the X direction setting.

0 = normal
1 = reversed

Page 4 of 5

int Get_Y_Direction()
Reads the Y direction setting.

0 = normal
1 = reversed

int Get_360_Direction()
Reads the 360 direction setting.

0 = normal
1 = reversed

int Get_Axes()
Reads the setting number of axes from the sensor.

1 = single 360 degree axis
2 = separate X and Y axes

void Set_Filter(byte index)
Sets the filter in the sensor.

Index Frequency
0 0.125Hz
1 0.25Hz
2 0.5Hz
3 1.0Hz
4 2Hz
5 4Hz
6 8Hz
7 16Hz
8 32Hz

void Set_X_Direction(byte direction)
Sets the X axis direction

0 = normal
1 = reversed

void Set_Y_Direction(byte direction)
Sets the Y axis direction

0 = normal
1 = reversed

void Set_360_Direction(byte direction)
Sets the 360 axis direction

0 = normal
1 = reversed

Page 5 of 5

void Set_Axes(byte n)
Sets the number of axes in the sensor

1 = single 360 degree axis
2 = separate X and Y axes

void Set_Zero(byte n)
Sets the zero point in the sensor

0 = absolute
1 = relative

