Features

- Dual axis measurement, range from ± 5 to $\pm 45^{\circ}$
- High resolution and accuracy
- Low temperature drift, with optional temperature compensation to further improve temperature performance
- Single-drop RS232, RS485 or multi-drop RS485 interface with ModBus protocol
- RS232/RS485 (non-ModBus) models feature an additional user-selectable NMEA0183 format
- Tough sealed anodised aluminium housing (IP67)
- CE certified and RoHS compliant
- 4 core 2 m PUR cable with 4 pin M12 Connector

Description

The SOLAR-2 inclinometers are range of high performance low cost dual axis tilt sensors for measurement of angle in both the pitch and roll axes. Through a flexible configuration and calibration program we can supply this device with any measurement range from $\pm 5^{\circ}$ to $\pm 45^{\circ}$. It can also be supplied compensated for a specific operating temperature range. The housing is a small, low profile Aluminium housing, hermetically sealed to IP67. The cable is a shielded black PUR cable and is
suitable for continuous outdoor use. They utilise a very high performance MEMS sensor which exhibits low long term drift compared with many competitive devices. It has an RS232 and RS485 interface option with our standard communication protocol as well as a version with RS485 multi drop ModBus communication protocol. They are CE and RoHS certified, and are manufactured, calibrated and tested in our UK factory to guarantee performance to the stated specification.

General Specifications

Parameter	Value	Unit	Notes
Supply Voltage	$9-30$	V dc	Supply is filtered, suppressed and regulated internally, however we recommend the use of a low noise supply to prevent noise coupling to the sensor.
Operating Current	$30 \mathrm{~mA}(@ \mathrm{VV})$ $20 \mathrm{~mA}(@ 12 \mathrm{~V})$ $10.5 \mathrm{~mA}(@ 24 \mathrm{~V})$	mA	Supply current depends on supply voltage.
Operating Temperature	-40 to 85	${ }^{\circ} \mathrm{C}$	Maximum operating temperature range. Units can be calibrated between -20 and 70
RS232/485 Output Rate request.			

Performance Specifications

Parameter	SOLAR－05	SOLAR－15	SOLAR－30	SOLAR－45	Unit
Measuring range	± 5	± 15	± 30	± 45	－
Zero Bias Error	± 0.005	± 0.010	± 0.015	± 0.020	。
Accuracy（＠20º	± 0.010	± 0.020	± 0.030	± 0.040	。
```Temperature Errors (without compensation) Zero Drift Sensitivity Drift```	$\begin{aligned} & \pm 0.0015 \\ & \pm 0.0030 \end{aligned}$	$\begin{aligned} & \pm 0.0015 \\ & \pm 0.0030 \end{aligned}$	$\begin{aligned} & \pm 0.0015 \\ & \pm 0.0030 \end{aligned}$	$\begin{aligned} & \pm 0.0015 \\ & \pm 0.0030 \end{aligned}$	$\begin{aligned} & \circ /{ }^{\circ} \mathrm{C} \\ & \% /{ }^{\circ} \mathrm{C} \end{aligned}$
```Temperature Errors (with compensation) Zero Drift Sensitivity Drift```	$\begin{aligned} & \pm 0.0003 \\ & \pm 0.0006 \end{aligned}$	$\begin{aligned} & \pm 0.0003 \\ & \pm 0.0006 \end{aligned}$	$\begin{aligned} & \pm 0.0003 \\ & \pm 0.0006 \end{aligned}$	$\begin{aligned} & \pm 0.0003 \\ & \pm 0.0006 \end{aligned}$	$\begin{aligned} & \circ /{ }^{\circ} \mathrm{C} \\ & \% /{ }^{\circ} \mathrm{C} \end{aligned}$
Accuracy－10 to $60^{\circ} \mathrm{C}$（without compensation）	± 0.070	± 0.090	± 0.120	± 0.150	－
Accuracy－10 to $60^{\circ} \mathrm{C}$（with compensation）	± 0.025	± 0.030	± 0.050	± 0.065	－
Long Term Stability	± 0.007	± 0.007	± 0.007	± 0.007	。
Resolution（＠1Hz BW）	0.001	0.001	0.001	0.001	－

Parameter	Notes
Measuring range	Defines the calibrated measurement range．Direction of measurement can be reversed and zero position can be reset anywhere in range．Settings are stored in non volatile memory so are remembered after power down．
Zero Bias Error	This is the maximum angle from the device when it is placed on a perfectly level sur－ face．The zero bias error can be removed from measurement errors either by mechani－ cal adjustment，or as a fixed offset value after installation，or by using the＇setzcur＇ command to zero the device（see page 8）
Accuracy（＠20 ${ }^{\circ} \mathrm{C}$ ）	This is the maximum error between the measured and displayed value at any point in the measurement range when the device is at room temperature $\left(20^{\circ} \mathrm{C}\right)$ ．This value includes cross axis errors．
Temperature Errors	These figures are for devices without additional temperature compensation．See part numbering options on page 7 for further details．
Zero Drift	If the device is mounted to a level surface in the zero position，this value is the maxi－ mum drift of the output angle per ${ }^{\circ} \mathrm{C}$ change in temperature．
Sensitivity Drift	When the temperature changes there is a change in sensitivity of the sensor＇s output． The error this causes in the measurement is calculated from the formula： $\mathbf{E}_{\mathrm{sd}}=\mathbf{S D} \times \Delta \mathrm{T} \times \theta$ Where： $\mathbf{E}_{\text {sd }}$ is the change in output（in degrees）due to sensitivity temperature change SD is the sensitivity drift specification from the above table（0．003\％） $\Delta \boldsymbol{T}$ is the change is temperature in ${ }^{\circ} \mathrm{C}$ θ is the current angle of the inclinometer axis in question in degrees．
Accuracy－10 to $60^{\circ} \mathrm{C}$（without compensation）	This is the maximum error between the measured and displayed value at any point in the measurement range at any temperature over the specified temperature range with－ out individual temperature compensation．
Accuracy－10 to $60^{\circ} \mathrm{C}$（with compensation）	This is the maximum error between the measured and displayed value at any point in the measurement range at any temperature over the calibrated temperature range with individual temperature compensation．
Long Term Stability	Stability depends on environment（temperature，shock，vibration and power supply）． This figure is based on being powered continuously in an ideal environment．
Resolution（＠1Hz bandwidth）	Resolution is the smallest measurable change in output．

Housing Drawing

Axis Direction and Mounting Orientation and Wiring Details
Mounted on a Horizontal Surface

$+\mathrm{Ve}$

Cable and Connector Details

Parameter	Value
Connector description	M12 4-pin male
Connector make-up	Over-moulded
Coding	A-coded
Overall length	2 meters
Connector seal rating	IP67
Braided	Yes
Braid type	PUR plated Copper
Jacket material	$4.7 m m$ (max)
Jacket diameter	24 AWG
Wire Gauge	$41 \times 0.08 \mathrm{~mm}$
Conductor strands	

Pin Number	Internal Wire Colour	Function
1	Brown	+ve Supply
2	White	Gnd (Ov)
3	Blue	RS485 A or RS232 Rxd
4	Black	RS485 B or RS232 Txd

M12 male connector View from front:

Part Numbering

Series Prefix

1 - No additional temperature compensation
2 - Temperature compensation over -10 to $60^{\circ} \mathrm{C}$

RS232 - RS232 Interface with LD standard communication protocol
RS485 - RS485 Interface with LD standard communication protocol RS485M - RS485 Interface with ModBus communication protocol

Customer Specific Options (Optional)

Example:

SOLAR-2-15-2-RS485M

SOLAR-2 Series dual axis inclinometer
$\pm 15^{\circ}$ Full Scale Measurement Range
Temperature compensated over the range -10 to $60^{\circ} \mathrm{C}$
RS485 Interface with ModBus communication protocol

Certification

The products are type approved to in accordance with the following directive(s):
EMC Directive 2004/108/EC
And it has been designed, manufactured and tested to the following specifications:

$$
\begin{array}{ll}
\text { BS EN61326-1:2006 } & \text { Electrical equipment for measurement, control and laboratory } \\
\text { use - EMC Requirements }
\end{array}
$$

Certification is available on request.

Level Developments Simplified Control Command Set

Data is transmitted and received over RS232 in full duplex mode and for RS485 versions in half duplex mode. The default configuration is with the baud rate set to 38.4 kbps , with 8 data bits, 1 stop bit and no parity. All commands are lower case and 7 bytes long. The time between each character of the command must be less than 100 ms otherwise the device will discard the command. The settings are all stored in non volatile memory.

Command	Description	Response Length	Response
get---x	Returns the X axis angle as either: - An INT32 value equal to the angle x 1000 - A fixed length ASCII string terminated with a carriage return depending on the setting of commands 'setoasc' or 'setoint' Shipping default is INT32.	4 bytes 9 bytes	$\begin{gathered} \text { 0x XX XX XX XX } \\ +025.430<C R> \end{gathered}$
get---y	Returns the Y axis angle as either: - An INT32 value equal to the angle $\times 1000$ - A fixed length ASCll string terminated with a carriage return depending on the setting of commands 'setoasc' or 'setoint' Shipping default is INT32.	4 bytes 9 bytes	$\begin{gathered} 0 x \text { YY YY YY YY } \\ +025.430<C R> \end{gathered}$
get-x\&y	Returns the X and Y axis angle (X is transmitted first) as either: - A pair of INT32 value equal to the angle $\times 1000$ - A fixed length comma separated ASCII string terminated with <CR> depending on the setting of commands 'setoasc' or 'setoint' Shipping default is INT32.	8 bytes 18 bytes	```0x XX XX XX XX YY YY YY YY \pmxxx.xxx,\pmyyy.yyy<CR>```
gettemp	Returns the temperature of the sensor as either: - An INT16 value equal to the temperature x 100 - A fixed length ASCII string terminated with a carriage return depending on the setting of commands 'setoasc' or 'setoint' Shipping default is INT32.	2 bytes 6 bytes	$\begin{aligned} & 0 \mathrm{x} \text { XX XX } \\ & \pm t \mathrm{t} . \mathrm{t}<\mathrm{CR}> \end{aligned}$
str9999	Set continuous output transmission rate in milliseconds (25-9999ms) - str0100 - 100ms (0.1s) between transmissions	2 bytes	OK
setcasc	Sets the output to transmit the X and Y angle continuously in ASCII format at the rate defined by strXXXX.	18 bytes	$\pm x x x \cdot x x x, \pm y Y y \cdot y y y<C R>$
stpcasc	Stops the continuous transmission of ASCII data	2 bytes	OK
$g e t-f 1 t$	Returns the value of the current filter time constant in ms as an INT16	2 bytes	0x XX XX
setdir1 setdir2 setdir3 setdir4	Sets the X axis measurement direction to positive clockwise Sets the X axis measurement direction to negative clockwise Sets the Y axis measurement direction to positive clockwise Sets the Y axis measurement direction to negative clockwise	2 bytes	OK
setzcur	Tare function to set the current position to zero	2 bytes	OK
setzfac	Cancels tare function and resets zero to factory setting	2 bytes	OK
setoasc	Sets the output to ASCII format	2 bytes	OK
setoint	Sets the output to Integer format	2 bytes	OK
setflt1 setflt2 setflt3 setflt4 setflt5 setflt 6 setflt7 setflt 8	Sets the low pass filter (damping) frequency to 0.125 Hz Sets the low pass filter (damping) frequency to 0.25 Hz Sets the low pass filter (damping) frequency to 0.5 Hz Sets the low pass filter (damping) frequency to 1 Hz Sets the low pass filter (damping) frequency to 2 Hz Sets the low pass filter (damping) frequency to 4 Hz Sets the low pass filter (damping) frequency to 8 Hz Sets the low pass filter (damping) frequency to 16 Hz	2 bytes	OK
$\begin{aligned} & \text { set-br1 } \\ & \text { set-br2 } \\ & \text { set-br } 3 \\ & \text { set-br4 } \\ & \text { set-br } 5 \\ & \text { set-br6 } \\ & \text { set-br } 7 \end{aligned}$	Sets the BAUD rate to 2400bps Sets the BAUD rate to 4800bps Sets the BAUD rate to 9600bps Sets the BAUD rate to 19200bps Sets the BAUD rate to 38400 bps Sets the BAUD rate to 57600 bps Sets the BAUD rate to 115200 bps	2 bytes	OK

NMEA0183 Compatibility mode.

NMEA0183 is a widely used standard for communication between marine electronic devices. It stands for "National Marine Electronics Association 0183" and defines a set of protocols and message formats for transmitting data between various marine navigation systems and communication equipment. Any SOLAR-2 Inclinometer using the Level Developments Simplified Control Command Set ("LD mode" as shown on the previous page) can optionally be changed into "NMEA0183 compatible output" mode as described in the following section. Please note that the settings shown on the previous page can only be changed while the sensor is in LD mode, they cannot be adjusted while the sensor is in NMEA mode.

While the sensor is in LD mode, the following command is used to change into NMEA0183 compatible mode:

Command	Description	Response Length	Response
setnmea	Exits LD mode and enters NMEA0183 mode. (see note below)	35	\$PLDLB, $\pm x x \times . x x x, \pm \mathrm{yyy}$. YYy, $\pm t . t * C S<C R><L F>$

Note: Upon entering NMEA0183 mode, the sensor will begin continuously outputting data. The interval between automatic transmissions is controlled by the "str9999" setting which is adjustable while in LD mode, (see previous page). If no user-defined transmission rate is selected, the default interval (1000 ms) will be used. The continuous output format is X angle, Y angle and Temperature as described in the "Sensor Response Formats" overleaf.

Changing back to LD mode

An NMEA0183 type command can be sent to the sensor to change it from NMEA Mode to LD Mode; the following command is used to do this:

\$PLDL100, 1*38<CR><LF>

The command above is comprised of the following parts:

Value	Length	Description
$\$$	1	String identifier
P	1	Proprietary message format
LDL	3	Manufacturer Code - (LDL = Level Developments Limited)
100	3	Holding register to write/read - See table below
1	1	Value to write to the holding register: "1" = Sets LD mode to Enabled - See table below
$* 38$	3	Checksum - Xor of all data after \$ and before "*" (B2PLDL1001 = 38)
$\langle C R><$ LF $>$	2	Carriage return and line feed

NMEA0183 Holding registers

The table below shows all available settings which can be modified while the sensor is in NMEA0183 mode:

Register Address	Name	Description
100	SetCommsMode	Set LD mode to "Enabled "(1) or "Disabled "(0)

level developments

SOLAR-2 : Dual Axis Inclinometer, RS232 or RS485 Output

NMEA0183 Compatibility mode (continued).

Sensor's Response Formats

The following example shows the default output format when the device is set to NMEA0183 mode:
$\$ P L D L B, \pm x x x . x x x, \pm y y y \cdot y y y, \pm t t . t * C S<C R><L F>$
The command above is comprised of the following parts:

Value	Length	Description
$\$$	1	String identifier
P	1	Proprietary message format
LDL	3	Manufacturer Code - (LDL = Level Developments Limited)
B	1	Identifier to show the response type/format - See table below
\pm xxx. xxx	8	Data frame 1-X axis angle
$\pm y y y \cdot$ yyy	8	Data frame 2-Y axis angle
$\pm t t . t$	5	Data frame 3-Temperature
CS	3	Xor of all data after \$ and before ""
$<$ CR><LF>	2	Carriage return and line feed

Message Format Identifiers - Sensor output formats (A-F)
The table below shows the different output formats used while the sensor is in NMEA0183 mode:

Value	Name	Description
A	Reserved	Not currently used
B	XYangle\&Temp	Shows that the message contains $\mathrm{X}, \mathrm{Y}, \&$ Temperature data as follows $\pm \mathrm{xxx} . \mathrm{xxx}, \pm \mathrm{yyy} . \mathrm{yyy}, \pm \mathrm{tt} . \mathrm{t}$

Software

A free Windows based application for reading angle, logging and device configuration is available from our website. It requires Windows XP SP3, Windows 7 or Windows 8, and works with 32 and 64 bit systems. It also requires the .net framework V3.5 or higher, and will prompt you to download and install this from Microsoft if it is not already installed on your system. A COM port is also required, and can either be a built in COM port, or a USB to Serial COM port.

The basic features are shown below:

- Automatic or manual configuration of COM port parameters
- Compatible with single or dual axis sensors
- Adjustable number of decimal places on displays
- Logging of data at specified intervals into CSV file
- Setting device to absolute or relative measurement mode
- Switching the data transfer protocol between Integer and ASCII
- Changing the frequency response of the sensor
- Changing the Baud rate of the sensor

We can also offer custom software development services, please contact us for further information.

This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software.

ModBus Control Command Set

Data is transmitted and received over RS485 in half duplex mode using the ModBus RTU protocol. The following section provides some basic information about the serial communication between the host PC or PLC and the SOLAR-2. The full ModBus specification can be obtained from http://www.modbus.org. ModBus is a command/response protocol over a serial bus.

The default ModBus serial parameters are: 38400 baud, 1 start bit, 8 data bits, no parity and 1 stop bit. The 8 data bits are sent LSB first. The baud rate can be changed to $115200,57600,38400,19200,9600,4800$ or 2400 by sending the appropriate command.

The byte order for all 16-bit values is Big Endian (most significant byte first).
Read and write access to the SOLAR-2 is done using ModBus Function Code 3 (read holding registers) and ModBus Function Code 6 (write single register) commands. These two function codes provide the basic functionality needed by most users of the SOLAR-2. A user defined ModBus function code 110 is provided for less commonly used, off-line functions such as setting serial port parameters and changing the device address.

ModBus device address must be in the range 1 to 247. All devices are shipped with a default address of 100 (decimal). Address 0 is the ModBus broadcast address. With this address all devices will perform the action of the function code. The maximum number of these devices that can be connected on a single network is 128 .

All ModBus commands and responses have a 16 -bit CRC for error detection. ModBus RTU data is in binary format rather than ASCII, so it cannot be viewed properly on a text terminal.

Below is a list of the register locations for reading and writing:

ModBus Registers

Parameter	Address	ModBus Register Address	Description	Read/Write
X Axis Angle	0x00	40,001	Address 0×00 returns the upper 16 bits of the sensor X axis angle. This combines with address 0×01 to form a 32 bit signed integer value equal to the measured angle x 1000.	Read Only
	0×01	40,002		
Y Axis Angle	0×02	40,003	Address 0×02 returns the upper 16 bits of the sensor Y axis angle. This combines with address 0×03 to form a 32 bit signed integer value equal to the measured angle x 1000.	Read Only
	0×03	40,004		
Sensor Temperature	0×06	40,007	Returns a 16 bit signed integer value equal to the temperature of the sensor in degrees Celsius $\times 100$	Read Only
Sensor Filter Index	0×09	40,010	Returns a 16 bit integer value between 1 and 7 which relates to a table of filter responses from 0.125 to 16 Hz	Read / Write
Tare Function	0×14	40,021	When set to ' 1 ' the device is zeroed at the current position (relative mode). When set to ' 0 ' the device is returned to absolute measurement mode (tare cancelled)	Read / Write

Low Pass Filter Frequency Indexes

The SOLAR-2 features a user-selectable low pass filter which can be used (for example) to reduce the effect of vibrations if they are present in the sensor's environment. The filter setting can be changed to any of the response times shown in the table below. The strongest filter $(0.125 \mathrm{~Hz})$ will provide the greatest damping and stability, however it will also take the longest time to respond to changes in angle (and vice versa). The filter configuration is a 2 nd order Bessel low pass filter implemented in a IIR algorithm. It should be noted that this setting does not relate to output data rate (ODR).

Filter Index	Filter Freq. (Hz)	Damping Time (ms)
1	0.125	8000
2	0.25	4000
3	0.5	2000
4	1	1000
5	2	500
6	4	250
7	8	125
8	16	62.5

Reading a Holding Register

The data from the device is stored in holding registers as detailed on page 4. Function code 0×03 is used to read these registers. Below is the command and response message format, including the error response in the even there is an error.

	Byte Data	No Of Bytes	Description
Command	0×64	1	Slave address 100
	0×03	1	Function code for read register
	0x0000	2	Starting register (0x0000 is X axis angle)
	0x0002	2	Number of registers to read
	0xCDFE	2	CRC-16 of all bytes
Response	0×64	1	Slave address 100
	0×03	1	Function code for read register
	0×04	1	Byte count (2 x number of regsiters)
	0x0000	2	First and second register data : $0 \times 0000 \mathrm{~A} 69 \mathrm{C}=42652$ (decimal)
	0xA69C	2	
	0xB4FC	2	CRC-16 of all bytes

Error Response	0×64	1	Slave address 100
	0×83	1	ModBus error function code
	0×01	1	Exception Code (0x01 invalid function code, 0×02 invalid register address)
	0×90 EF	2	CRC-16 of all bytes

Writing to a Holding Register

Data can be written to some registers, such as the registers that store the filter indexes for each axis frequency response. Function code 0×06 is used to write these registers as detailed below.

Command	Byte Data	No Of Bytes	Description
	0×64	1	Slave address 100
	0×06	1	Function code for write register
	0×0009	2	Register to write $(0 \times 0009$ is axis filter)
	0×0003	2	Data to write $(16$ bit $) .0 \times 0003=0.5 \mathrm{~Hz}$
	$0 \times 103 \mathrm{C}$	2	CRC-16 of all bytes

$*$ Response (same as command)	0×64	1	Slave address 100
	0×06	1	Function code for write register
	0×0009	2	Register to write $(0 \times 0009$ is axis filter)
	0×0003	2	Data to write $(16$ bit). $0 \times 0003=0.5 \mathrm{~Hz}$
	$0 \times 103 C$	2	CRC-16 of all bytes

Error Response	0×64	1	Slave address 100
	0×83	1	ModBus error function code

code, 0 \times 02 invalid register address, 0 \times 03

parameter out of range)\end{array}\right]\)| CRC-16 of all bytes |
| :---: |

Changing the BAUD Rate

The BAUD rate of the device can be changed using the special function code $0 \times 6 \mathrm{E}$ and special command code $0 \times 8 \mathrm{~F}$.

	Byte Data	No Of Bytes	Description
Command	0×64	1	Slave address 100
	0x6E	1	Function code - 0x6E
	$0 \times 8 \mathrm{~F}$	1	LD command - $0 \times 8 \mathrm{~F}=$ set baud
	0×03	1	$1=2400$
			$2=4800$
			$3=9600$
			$4=19200$
			$5=38400$
			$6=57600$
			$7=115200$
	0x5AF8	2	CRC-16 of all bytes

level developments

Changing the Device Address

The Address of the device can be changed using the special function code $0 \times 6 \mathrm{E}$ and special command code 0×91. The device will reply with the original address in the response, and will change internally after the response has been sent.

Byte Data	No Of Bytes	Description	
	0×64	1	Slave address 100
	$0 \times 6 \mathrm{E}$	1	Function code $-0 \times 6 \mathrm{e}$
	0×91	1	LD command $-0 \times 91=$ change address
	0×01	1	New Address $=1$
Response	$0 \times D 299$	2	CRC-16 of all bytes
	0×64	1	Slave address 100
	$0 \times 6 \mathrm{E}$	1	Function code $-0 \times 6 \mathrm{e}$
	0×91	1	LD command $-0 \times 91=$ change address
	0×00	1	$0=$ success $1=$ failed
	0×1359	2	CRC-16 of all bytes

Examples of Reading Angle

Example 1: Read the angle from the sensor X axis with address 100 (0×64):

```
Command
address (0x64 = 100 decimal)
| function code
| | starting reg. to read (0x0000)
| | | number of reg. to read (0x0002)
| | | CRC-16
| | | |
640300 00 00 02 cd fe
Response (positive angle)
address (0x64 = 100 decimal)
| function code
| | byte count
| | | angle (0x0000a69c = 42652 decimal (42.652 degrees)
| | | CRC-16
| | | | |
6403 04 00 00 a6 9c b4 fc
Response (negative angle)
address (0x64 = 100 decimal)
| function code
| | byte count
| | | angle (0xfffda7d7 = -153641 decimal (-153.641 degrees)
| | | CRC-16
| | | |
6403 04 ff fd a7 d7 54 bf
```


Example 2: Read the angle from the Y axis with address 100 (0×64):

```
Command
address (0x64 = 100 decimal)
| function code
| | starting reg. to read (0x0002)
| | | number of reg. to read (0x0002)
| | |
| | | | CRC-16
| | | |
640300 02 00 02 6c 3e
Response (positive angle)
address (0x64 = 100 decimal)
| function code
| | byte count
| | | angle (0x00005ba3 = 23459 decimal (23.459 degrees)
| | | | CRC-16
| | | |
6403040000 5b a3 b4 7c
```

```
Response (negative angle)
address (0x64 = 100 decimal)
| function code
| | byte count
| | | angle (0xffffa54d = -23219 decimal (-23.219 degrees)
| | | | CRC-16
| | | |
6403 04 ff ff a5 4d 74 74
```


Example 3: Change the frequency response to 0.5 Hz :

Command

address (0x64 = 100 decimal)
| function code
| | register to write to (0x0009)
| | | data to write ($0 \times 0003=0.5 \mathrm{~Hz}$)
1 | I
| | | |
64060009000310 3c

Response

address (0x64 = 100 decimal)
| function code
| | register written to (0x0009)
| | | data written ($0 \times 0003=0.5 \mathrm{~Hz}$)
$1 \quad 1 \quad 1$
$\begin{array}{lllll}1 & 1 & \mid & \text { CRC-16 } \\ 1 & 1 & 1\end{array}$

Example 4: Setting the tare function (current position to zero):

Command

address (0x64 = 100 decimal)
| function code
| | register to write to (0x0014)
| | data to write ($0 x 0001=$ set tare on)
| | | |
| | | CRC-16
| | | |
64060014000101 fb

Response

address (0x64 = 100 decimal)
| function code
| | register written to (0x0014)
| | | data written ($0 \times 0001=$ set tare on)
| | |
| | | | CRC-16
| | | |
64060014000101 fb

Example 5: Change the device address from 100 to 1:

Command

address (0x64 = 100 decimal)
| special function code
| | LD command for change address
| | | new address (0x01)
| | |
| | | | CRC-16
1 | |
64 6e 9101 d2 99

Response

address (0x64 = 100 decimal)
| special function code
| | LD command for change address
| | | Success/Fail (0x00 = success)
| | | |
| | | | CRC-16
| | | |
$646 e 91001359$

